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OPTIMAL DESIGN OF INDUSTRIAL MANIPULATOR TRAJECTORY
FOR MINIMAL TIME OPERATION

Ho-Ryong Kim·, Jee-Soo Hong· and Kyoung-Chul Ko·

(Received July 19, 1989)

The operatJion time of an industrial manipulator which moves along the arbitrary trajectory form initial to final position is
minimized. The Hartenberg-Denavit coordinates and its transformations are employed to express the motion of manipulator joints
and the method of finding inverse kinematic solution is established to minimize the operation time. The dynamic equations for a
manipulator of n joints are transformed into the equation of 1 D.D.F. by utilizing path coordinates. By using a recently developed
method, the allowable maximum speed limit curve is obtained from the torque limits of joint driver, and the curve is used to
determine the optimal velocity curve which minimizes the operation time. The minimum time trajectory planning is applied to an
industrial manipulator resulting in the performance improvement of the manipulator. As a demonstrative example, we have
simulated the proposed algorithm with a dynamic model of PUMA 560 on an IBM Pc.

Key Words: Time Optimal Phase Plane Trajectory, Minimal Time Operation, Dynamics of Industrial Manipulator,
Allowable Maximum Velocity Limit Curve, Switching Point

1. INTRODUCTION

The demand for productivity improvement in these days
requires the industrial automation, for which robot manipula­
tors have emerged as a major manufacturing components.
High productivity of robot manipulators performing tasks
such as material handling, welding, spray painting can be
achieved by having manipulators move more quickly. How­
ever, manipulator has a limited capability in following the
given path and generally the actuator's torque may be arbi­
trary function of the kinematic and dynamic characteristics
of the manipulators. Therefore most of industrial manipula­
tors have been programmed to move along their paths with
constant accelerations or velocities. These velocities and
accelerations are usually selected not to exceed their maxi­
mum values at any point along the path so as the manipulator
motion not to leave its path. Practically the actuator torques
have near maximum value at only a few points on the path
and their operation performance will be less than their capac­
ity along the path. A manipulator could operate faster by
utilizing its full capacity at every point along the path.

Considerable research has been done to find out analytical
solutions for improving productivity by minimizing operation
time. Kahn and Roth(1971) presented time-optimum tra­
jectory planning problem for a manipulator traveling
between two end points in which the path was not specified.
The maximum forces and torques were used as constraints by
assuming them to be constant. A simplified linearized manip­
ulator model resulted in bang-bang control. Lin and
Chang(1983) carried out the formulation and optimization of
cubic polynomial trajectory for manipulator with constraints
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on the velocity, acceleration and jerk of joint which were
expressed in joint coordinates system. When a new trajectory
is given, Hollerbach(1984) obtained an equation for a new
trajectory by simply linearizing the original dynamic equa­
tion. It is however, difficult to apply his method to the
operation at a high speed or rapid speed change.

Ailon and Langholtz(1985) mathematically proved the exis­
tence of time optimal control. Rajan(1985) found the mini­
mum time trajectory for the 2 D.O.F. manipulator for speci­
fied path using spline when the motions of acurators are
constrained. He also suggested the method of improving the
minimum time by changing the path. Sahar(1985) altered the
working space into a type of mosaic by using grid points and
selected the grid points by applying time scale algorithm to
find the linearized optimal trajectory. However, a real opti­
mal trajectory is nonlinear and it is difficult to obtain an
exact solution with this method since the nonlinearity is
neglected. Shin and Mckay(1985) have attempted to develop
approximate solutions to the problem to reduce the
computational effort. In their works, the problem is limited to
finding the manipulator's velocity profile along a prescribed
path so that it is traversed in minimum time without violating
the physical capabilities such as maximum velocity or torque.
Kim and Shin(1985) performed optimal control with a weight­
ed time operation cost using a concept of averaged dynamics
for each sampling interval on a path. Shiller and Dubows­
ky(1985) analytically calculated the optimal time according
to a prescribed path with the constraints on actuator and the
payload at end effector was included in their calculations.
Norris et. al(1986) found the path taken less time by utilizing
the minimum time planning for a specified path and the
parameterized Bezier spline when the constraints are given
on the actuator and its path. Pfeiffer and Johanni(1987) solved
Lagrange-Euler dynamic equation of n D.O.F. manipulator by
reducing the equation into 1 D.O.F. problem through the path
coordinates. They provided the method of reducing the opera-
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3. FORWARD KINEMATICS AND
INVERSE KINEMATICS

Forward kinematics for a manipulator is the process to
calculate the position (or motion) of an end effector when
joint variables are specified. The process is carried out by
multiplying sequentially the 4x 4 homogeneous transforma­
tion matrix of each joint as in Eq.(2) and finding the transfor­
mation matirx Ti for the corresponding position(or motion).

A, = [ ~_\r?_t;~-i-<?~)---+-.J'~tr~l}-il~~}-?~)----] (1)

[

cos{}, -sin{},cosa, sin{},sinai aiCOS{}i]
_ sin{}, cos{},cosai -cos{},sina, a,sin{},
- 0 sina, cosa, d,

o 0 0 1

tional cost and the jerk effect by considering the weighted
minimal time operation cost and driving torque.

In this work, the operation time of an industrial manipula.
tor which moves along arbitrary trajectory from initial to
final position is minimized. The Hartenberg·Denavit coordi­
nates and its transformations are employed to express the
motion of manipulator joints, and the method of finding the
inverse kinematic solution is established to minimize the
operation time. The dynamic equations for manipulator are
transformed into the equation of 1 D.O.F. by utilizing path
coordinates. By using a recently developed method the allow­
able maximum speed limit curve is obtained from the torque
limits of joint actuators, and the curve is used in determining
the optimal velocity curve which minimize the operation
time. The minimum time trajectory planning is applied to an
industrial manipulator to prove the productivity improve­
ment of the manipulator.

2. COORDINATES SYSTEM AND HOM­
OGENEOUS TRANSFORMATION Ti=A, A 2 Ai

tion matrix
when Ai is the transforma­

(2)

Successively premultiplying Eq.(3) by the A matrix inverses
gives

Eq.(3) and Eq.(4) give j -1 equations which consist of known
T j and joint variables (}i on its left hand side and zeros,
constant or joint variables on the right side. From Eq.(3), 12
equations are obtained and the first variable q, is found by
comparing the terms on both sides. The other variables q2

qj are sequentially determined by substituting q, into
Eq.(4) and repeating this procedure.

In contrast to forward kinematics, the inverse kinematics is
employed to find the joint variables inversely from the
position(or motion) of end effector. The process of the inverse
kinematics is briefly discussed below.

Assume that the end effector is located at j th joint and its
homogeneous transformation matrix is given. Then the joint
variable q in general coordinates system is determined se­
quentially from ql to qj.

Premultiplying A ,- ' to Tj=A , A2 A j gives

(4)

(3)

A 2- 1A,-'Tj=A 3 ...... A j
Ai2,Aj22 ...... A2- 1A,-'Tj=Aj

There are two coordinates system used to describe the end
effector position of a manipulator; (1) reference(absolute)
coordinates system. (2) joint(relative) coordinates system.
The reference coordinates system is a right hand rectangular
coordinates system fixed to manipuiator base, where as the
joint coordinates system is the system expressing the relative
position between joints. The joint coordinates system is
measured in radian for a revolute joint or in length unit for a
prismatic joint.

The joint coordinates system, which is convenient to use,
was suggested by Hartenberg and Denavit(1955) in the motion
analysis of passive mechanism Le. linkages. Instead of using
three translational and 3 rotational parameters to define the
spatial motion, they simply described the motion by introduc­
ing 4 parameters of a, a, d, {} as shown in Fig. 1. These 4
patameters are usually called kinematic parameters of a
robot manipulator.

In the real motion of manipulator only one among 4 param­
eters becomes variable; {} for revolute joint, d for prismatic
joint and the remainder becomes constant. The relative
positions between joints and orientation/position of the end
effector are obtained through 4 x 4 homogeneous transforma­
tion matrix as given in Eq.(I)

LIN K.
I

a.

/
Fig. 1 Link parameters

4. KINEMATIC DIFFERENTIAL
RELATIONSHIPS

The differential relationships between the reference coordi­
nates system for the end effector position and the joint
coordinates system is necessary for the calculation of
Lagrange-Euler equations that gives the dynamic equations
for the industrial manipulator.

Let qi be the i th joint variable of the manipulator and dA i

be a change of Ai for the infinitesimal change of q,. Then
At +dA, is equal to the infinitesimal rotation d{} of A, with
respect to vector k plus infinitesimal translations dx, dy, dz,
This can be expressed as
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A,+dA;==Trans(dx,dY,dz) Rot(k,d8)A, (5)

Accordingly

dA, == {Trans(dx,dY,dz) Rot(k,d8) - I}. A; (6)

5. DYNAMIC EQUATION OF AN
INDUSTRIAL MANIPULATOR

Let 8, be the differential operator and then Eq.(6) becomes

where

Q, == {Trans(dx,dY,dz) Rot(k,d8) - I}

[

0 -kzd8 kyd8 dX]
_ kzdO 0 - kyd8 dy
- - kyd8 kyd8 0 dz

o 0 0 0

In Eq.(8)

kx == ky== dx= dy == dz == 0 for revolute joints
kx==ky==kz==dx==dy==O for prismatic joints

(7)

(8)

Mechanisms are generally classified into two kinds:
(1) passive mechanisms consisting of closed loop such as

1 D.O.F. linkages
(2) active mechanisms consisting of open loop such as

robots or industrial manipulators of multi D.O.F.
The rigorous analysis of the manipulator motion is extremely
difficult because the driving units at joints are composed of
passive mechaisms such as gear trains and D.C. servo motors.
Therefore, the motion analysis of a manipulator is performed
by considering the manipulator as an active mechanism.

The equation of motion of an active mechanism as the
model of a manipulator can be derived by employing Lagran­
gian dynamics. The Lagrangian dynamics enables one to
derive in a simple way the dynamic equation of motion for a
complex multi D.O.F. system.

The Lagrangian equation for a manipulator with n D.O.F.
is given by

where

Since

(16)F
i

== _tLf~) _ aL
dF\ aq, aql

=='±Dijqj+I,aiit+±±Du,qjq,+D.
i'~l j=lk=l

In Eq.(16)

L==K-P

{ 1 ~ T ( ~ ~ aT. I aT,. .)+ 1 ~ I a . 2}
== 2,"='1 race m"7::d2I aqm' 'aq, qmq, 2~1' q,

-- {- t,m,g( T1 • r,) } (15)

where
K ,= total kinetic energy of the robot manipulator
P == total potential energy of the robot manipulator
r, == point on ith link
Ii == inertia matrix
U == inertia of an actuator
m, ==mass
g == acceleration of gravity
q, == ith joint variable
T, == ith transformation matrix

Applying the Lagrange-Euler formulation to the Eq.(15)
yields the necessary generalized torque F, for the actuator of
joint i to drive the ith link of the manipulator.

(11)

(10)

- Oz Oz (po n)z]
o -nz (P'o)z
nz 0 (p. a)z
o 0 0

j,c1, can be expressed in a matrix form

The differential change of TAj> == 1) with repect to q,
becomes

The differential change of aaTj with respect to the other
qi

variable q, will be

Eq.(9) is the component of jacobian matrix J(q) and Eq.(12) is
that of Hessian matrix H(q).

Therefore, the velocity of i th link is

Vi==j(q)q

and its acceleration becomes

v,==j(q)ij+j(q)q

(12)

(13)

(14)

D Ii qi == effective inertia force of joint i, i.e. the torque
at joint i caused by the acceleration of joint i

D'jq, or D,jqj==coupling inertia between joints i and j
Dijj qJ== centrifugal force of joint i due to the velocity of joint

j
Dij,qjq. +Di'jq ,qj==Coriolis force actiong at joint i due to
the velocities at joints j and k
D, == gravity force at joint i

The inertia and the gravity terms are particularly impor­
tant in manipulator control since they affect the servo stabil­
ity and the positioning accuracy.

The centrifugal and Coriolis forces are considered impor­
tant only when the manipulator moves at high speed. How­
ever, the errors caused by these forces are relatively small.
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where
[M]=L:D;j : inertia matrix

[C] = ±±D 'jk : Coriolis, centrifugal tensor
j=lk=l

G = D, : gravitational vector
F = F, : external force vector at actuators

Converting Eq.(19) into path coordinates(s) through
kinematic transformation gives

The actuator inertia I,a vary in magnitude according to the
manipulator configuration. Those are relatively large, and
have the effects of decreasing the structural dependence of
the effective inertias as well as decreasing the relative impor­
tance of the coupling inertia terms. In other words, when the
acurator inertia is large, it is not sufficient to consider only
the manipulator structure and the inertia force should be
taken into account together with the coupling inertia force.

The process to hand the dynamics of an industrial manipu­
lator of robot can be summarized in Fig. 2.

6. OPTIMIZATION FOR MINIMAL
TIME OPERATION

gible, Eq.(16) can be rewritten as

[M]f)"+ OT[C]O +G=F (19)

where

Substituting Eq.(20) into Eq.(19) gives

There are generally three methods to represent the trajec­
tory of an end effector.

(I) Straight lines connected by circular arcs
(2) Perturbations about a straight line by using Fourier

series
(3) Spline
In this work, splines are chosen to represent the path since

the path curve can be adjusted conveniently by a finite set of
scalar parameters. The spline function is expressed as

in which

[R].=]acobian matrix [R] •• = Hessian matrix

(21)

m( s) = [M][R].l PS
b( s) = [M][R].l {Pss- ([R].lps) T[R] •• ( [R].l pS)}

+ ([R].lps)T[C][R].lps)
g(s)=G

Eq.(21), which is a second order differential equation, can
be converted to a set of 1st order differential equations and
the converted equations are solved by using an integrating
factor. When the initial conditions of position and velocity
are so and So respectively, the linear velocity of an end
effector s becomes

(17)

where

and

ro - ra : vectors of control points
u : parameter having a value between 0 and 1, i.e.

the normalized distance corresponding to the path s. [ 1 s 1JJ>.dS 2(F ] "JJ>.S2(S)= S2(so)+ e . -gds e-fs ds
So 86 m m m

(22)

Hence, from Eq.(21) the maximum and minimum acceleration
of ith link becomes

Accordingly,

(18)

where
S'a, = (F'max- b,S2- G)/mi
S'd,= (F,min- biS 2- G)/m,

(23)

u- au k
s- au as

When sand S are given, the allowable range of acceleration
can be obtained from Eq.(23)

Assuming the force due to the actuator inertia to be negli-
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where

and

(26)

A (s) = dB22B Gj(s)
2 ds 1 mAs)

7. EXAMPLE

1" 1t(s) = -.-(-)ds
80 S S

Bl(S) = b.( s) - bj(s) m.( s) /mA s)
B2(S) = G.(s) - GA s) m.(.~) Imj( s)

F.=F.",ax(if m.>O)
F.=F.",in(if m.<O)

The minimum time trajectory planning described above is
applied to PUMA 560 (Fig.5) treating the manipulator as 3R
active mechanism. The kinematic parameters (a, a, 8, d) of
PUMA 560 are given in Table 1 and its general data in Table
2.

Two end points and control points of the trajectory are
chosen as follows

If the above condition is satisfied, (s *, s*) can be a tangent
point.
With the optimal trajectory determined in this way, the
values of Oi' ifi and F i can be found from Eq.(20) and Eq.(21).
The time taken from initial position so to final position Sf

along the optimal trajectory becomes

Therefore, for each value of s"" Eq.(25) is solved for s which
satisfies the condition,

Fig.4 Velocity limit curve and optimal velocity curve in the
phase plane
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The allowable range of S'i in phase space for state vari­
ables sand s is shown in Fig. 3. From Fig. 3 and Eq.(23), the
velocity at the time when the magnitude of range is zero(that
is fa = S'd) is the allowable maximum velocity s", and if s is
greater than S", the end effector leaves its path.

The velocity limit curve s", corresponding to the path s is
shown in Fig. 4. In Fig. 4, the curve of So, d, c, e, s is the
optimal velocity curve for the end effector's path and the
points d, c, e are the switching points between acceleration
and deceleration, which is found by forward integration for
acceleration range and backward integration for deceleration
range. The prohlem is how to find intermediate switching
points like c.

The time optimal phase plane trajectory must meet the
maximum velocity curve tangentially at the switching
point(Yang, 1988).

In the velocity of tangent point, the j th actuator is saturat­
ed with the acceleration.

Then there must be at least one other actuator torque F.
which, at the tangent point, satisfies the following condition.

The simplified expression for the necessary condition of
tangent point is given by

To=(OA, -004, -0.1)
Tl = (0.5, -0.05, 0.04)
T2=(0.5, 0.2, 0.5)
T3= (004, 004, 0.3)

The joint angles along the path and their time derivatives are
shown in Fig. 6 and Fig. 7 respectively. Fig. 8 shows the
velocity limit curve and optimal velocity curve along the
path, where the curves are compared with conventional
velocity control(constant velocity and acceleration). The
total length of trajectory is 1064 mrn, the operation time
taken along the optimal trajectory is calculated as 00419 sec.(25)

(24)
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Table 1 Geometric parameters for PUMA 560

a,=0.432, a,= -0.2, d,=0.149, d.=0.433

Table 2 General data for PUMA 560

-40<F, <40
-130< F,< 130
-30<F,<30

JOINT 0 a a d

1 0, -90' 0

2 0, O' a, 0

3 0, 90' a, d,

4 O. -90' 0 d.

5 05 90' 0 0

6 O. O' 0 0

Link p 1 2 3 unit

Mass Mp 2.27 15.91 11.36 kg

Center x 0.00 0.00 7.50 cm
of y -21.60 0.00 0.00
Mass z 0.00 0.00 21.60

Radius Kx 4.08 4.08 8.63 cm

of Ky 24.94 8.82 8.82
Gyration K. 2.55 2.55 24.94
Torque max 40.0 130.0 30.0 Nm

min -40.0 -130.0 -30.0

Theta max 160.0 45.0 225.0 deg
min -160.0 -225.0 -45.0

and the time taken for conventional control is calculated as O.
542 sec. Thus the minimum time trajectory planning reduced
the operation time as much as 23%.

The position, velocity and acceleration of the end effector
along the path are shown in Fig. 9. And Fig. 10 shows the
torque curves of 1st, 2nd and 3rd actuators for optimal trajec­
tory operation. From Fig. 10, it is recognized that the torque
curves satisfy well the given allowable range which are
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acceleration control.
(2) The straight line connecting between two points in

plane or space has been considered as the shortest distance
taking minimum time.
However, it was validated in this work that curved trajectory
which takes less operating time than the straight line exists.
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8. CONCLUSION

(1) The application of the minimum time trajectory plan­
ning reduced the operating time of the industrial manipulator
by 23% compared to the conventional constant velocity or

0.00 O.llS 0.17 0.25 0.34 0.42
TI ME (llec)

Fig. 9 Position and velocity of the end effector along path
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The above results were compared with an operation along
the straight line trajectory which directly connects the initial
and final points in space. Total length of the trajectory was
894 mm which is shorter than the optimal trajectory by
310mm, but the time taken for this trajectory by applying the
same minimum time planning was 0.504 sec. which is 0.085
sec. longer than the optimal treajectory.

This result indicates that there exists a trajectory for the
end effector movement, which takes less time than the
straight line does, and breaks our general common sense to
consider the straight line as a shortest distance.
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Fig. 10 Torque variation at each joint according to optimal
velocity planning


